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LFLTER TO THE EDITOR 
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random walk method 
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PO Box 264,Clayton, Victoria 3168, Australia 

Received 29 January 1990 

Aktract. A random walk algorithm for calculating the effective permeability of random 
mixtures of two finite permeability components (e.g. sandstone and shale) is introduced. 
It is an extension of the ‘ant in a labyrinth algorithm, which only applies when one of the 
components has zero permeability. Numerical results obtained from the proposed random 
walk algorithm are shown to be in close agreement with those obtained from the conven- 
tional finite difference method on three-dimensional cubic lattices. In contrast, it is shown 
that the hybrid random walk algorithms which have been used in the past to study the 
critical behaviour of two-component random conductor mixtures are inadequate for the 
problem under consideration. ‘Ihe proposed random walk algorithm provides a computa- 
tionally efficient method for calculating the effective permeability and does not require the 
explicit solution of the fluid flow through the random mixture. 

The flow simulation programs used in petroleum reservoir engineering contain the 
implicit assumption that the properties of a reservoir can be considered to be 
homogeneous on the scale of the grid blocks used in the finite difference scheme. At 
best this assumption is questionable and it is particularly unsatisfactory in the case 
where the reservoir rock, which is predominantly sandstone, contains shale lenses of 
an intermediate length which cannot be correlated between wells. The shale lenses 
have a very low permeability, a factor of three to seven orders of magnitude less than 
the sandstone permeability, and can drastically alter the flow characteristics of a 
reservoir, The problem of determining the effective permeability of a hetero- 
geneous reservoir is of prime importance in assessing the economic viability of 
producing the reservoir and has been the subject of much recent research in the 
petroleum industry [ 1,2]. 

In this paper we discuss the calculation of the effective permeability of sandstone- 
shale reservoirs by random walk techniques. In computing the effective permeability, 
K , ~ ,  of a random porous medium in numerical simulations, the usual procedure is to 
solve the flow equations by way of a finite difference scheme, to find the pressure 
distribution at the grid points and to equate the integrated flux over any cross section 
of the field with the flux corresponding to a field of uniform permeability K , ~ ,  in 
accordance with Darcy’s law (a stochastic approach is used whereby ensemble averages 
are taken over a large number of realisations of the permeability distribution). However, 
if one is only interested in calculating the effective permeability it is not necessary to 
go to the trouble of solving the flow equations. On large lattices, it is more efficient 
to use a random walk method, familiar from work on difision and percolation theory 
131. 
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A step in this direction was taken by Drummond et a1 [4]. They developed a 
discrete time numerical algorithm to integrate the Ito-type stochastic differential 
equation corresponding to the flow problem. In their first-order algorithm, the update 
step at time T for a particle located at position x is given by 

Ax = V K ( X ) A T +  ( ~ K ( X ) A T ) ” ~ V  (1) 

where A T  is the time step and is a vector whose components are independent Gaussian 
random variables with zero mean and unit variance. Thus, it contains a local drift 
term which depends on the gradient of the permeability at x, and a local diffusion 
term, which contains a random factor. In the case in which the permeability is constant, 
the algorithm reduces to a pure random walk, i.e. Brownian motion. Drummond et a1 
applied their methods to the effective permeability problem for continuous permeability 
distributions, such as the log-normal distribution, using small variances, so that 
comparisons with the results of perturbation theory could be made. 

In reservoir simulations, the permeability is defined on discrete grid blocks and is 
often drawn from a discontinuous permeability distribution. For example, it has been 
shown that sandstone-shale reservoirs can be well approximated by using a bimodal 
distribution of the permeabilities, i.e. by using some mean value, K, , ,  for the sandstone 
permeability (usually the geometric mean) and another value, KSh,  for the shale 
permeability [l]. This is because the permeability variation within each type of rock 
is negligible compared with the variation between rock types. In this case, it is evident 
from equation ( 1 )  that problems would arise in the algorithm of Drummond er a1 at 
the interface region between sandstone and shale where VK is large. Even if the 
permeability distribution were smoothed out to make it continuous, very small time 
increments would have to be taken in order to prevent the spatial step size from blowing 
up. Hence, for a discrete permeability distribution it would be preferable to have a 
discrete lattice random walk algorithm. The algorithm proposed in this paper is limited 
in the sense that it only applies to the two-component permeability case. However, 
its structure suggests a possible extension to multicomponent systems and work is in 
progress on this. 

The problem of calculating the effective permeability of media with a bimodal 
distribution of permeabilities is mathematically equivalent to calculating the effective 
conductivity of two-component random resistor networks [ 5 ] .  It is well known that 
one can replace the conductivity problem with a diffusion problem using the Nernst- 
Einstein relation [6,7] which states that the diffusivity is proportional to the conduc- 
tivity. For a homogeneous medium the diffusivity can be calculated using discrete 
lattice random walks. Diffusivity is given by the slope of the line ( R 2 ( r ) )  against r, at 
large times, where ( R 2 (  t ) )  is the mean square distance travelled by the random walkers 
at time t. 

Our random walk algorithm for the two-component permeability case involves a 
random walker, or ‘ant’, which performs a discrete lattice walk on each component 
separately, with the jump-rate slowed down by a factor of K,h/K,, in the shale region 
as compared with the sandstone region, and with an appropriate probability, the 
‘interface’ probability, defined for jumping from one component to another when 
starting from an interface site. The interface probability corresponds to the drift term 
which appears in the stochastic differential equation (1) in regions where the permeabil- 
ity gradient is non-zero. The issue of what the interface probability should be and 
how the algorithm should be set up is discussed below. It is shown that previous 
related hybrid random walk algorithms [8,9], although adequate for their intended 
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purpose of studying the critical behaviour, do not give the correct value of the 
permeability at all volume fractions. This is because they use a ‘myopic ant’-type 
algorithm [ 101 as distinct from the more impartial ‘blind ant’-type algorithm which is 
proposed in this letter. 

When the shale permeability is assumed to be zero, the interface probability must 
be such as to ensure that total reflection occurs from a shale interface back into the 
sandstone. In this case, one can use the ‘ant in a labyrinth’ algorithm of de Gennes 
[6], as was recently done by Schwartz and Banavar [ l l ]  in  their calculations of the 
electrical conductivity and DC permeability of isotropic and anisotropic packings of 
multisize granular materials. In the ‘ant in a labyrinth’ algorithm, the ant randomly 
chooses one of its nearest neighbours and moves there if the chosen site has finite 
permeability (i.e. is in sandstone) or stays put if it has zero permeability (i.e. is in 
shale). In either case, the simulation time is incremented by one unit. This is an 
example of a ‘blind ant’ algorithm. A related ‘myopic ant’ algorithm is one in which 
the ant only chooses from those of its neighbours which have finite permeability and 
always moves to the selected site. It has been shown [12] that the blind ant is a more 
impartial sampler of a cluster because, asymptotically, it visits each site of a cluster 
with equal probability, while this is not true of the myopic ant. Hence, in general we 
would expect the two algorithms to give different answers, as is illustrated in figure 1. 
However, the myopic ant algorithm can still be used to study the critical behaviour of 
systems because it has been shown [12] that the two types of ant are in the same 
universality class, i.e. give rise to the same critical exponents. 
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For the case in which the shale permeability is not zero, Bunde er a1 [8,9] suggested 
an algorithm which they called ‘the Boston termite l’,  which will be referred to in this 
letter as ‘the Boston ant’, for consistency. In the Boston ant algorithm, the transition 
probability at a given site, l l i ,  to the ith nearest-neighbour site is given by H i  = K ~ / X , ~ K ~ ,  
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where K ~ = ( K , ,  or K,h) is the permeability at site i and the sum cj extends over the 
nearest neighbours of site i. The ant’s time step, Tsh in shale and T,, in sandstone, is 
inversely proportional to the permeability, i.e. 7,h/ T,, = K,,/ K,h . The time step is 
explicitly scaled so that the walker slows down by the appropriate amount in the shale 
region relative to the sandstone region. The total elapsed time, t = N,,T,,+ N s h T s h ,  is 
related to the mean-square displacement and the diffusion constant by: 

( R * ( t ) ) a D t  (2) 

where Nss and N s h  are the total number of steps in sandstone and shale respectively. 
Time ensemble averages are considered. In the limiting case K,,, = 0, the Boston ant 
reduces to the previously discussed myopic ant algorithm-the ant moves within the 
sandstone, making a jump to a new site at each time step. 

In the proposed new algorithm, the permeabilities are scaled so that K,, = 1 and 
K,h = K,h/ K,, . The ant at site i chooses one of its nearest neighbours, say j, at random 
(hence, it is a blind ant) and moves there with a probability given by: 

2 K i K j  n .=- ’ K , + K ~  
(3) 

or stays put with probability (1 - II,,). In either case, the simulation time is incremented 
by one unit. In this algorithm, the same rules apply regardless of whether site i is in 
sandstone or shale or at an interface. It is not necessary to scale the time step explicitly 
since this is achieved implicitly by including the factor K ,  in the jump probability IIl,. 
With the proposed algorithm it is possible to use the exact enumeration method [12] 
to enumerate all possible random walks, since the transfer matrix of jump probabilities 
II,) is well defined. (In practice, we did not use the exact enumeration method because 
we wanted to simulate long walks on large, three-dimensional lattices). 

Consider how the algorithm operates in different regions: 
( i )  if i and j are both in sandstone, then n, = 1, so the ant performs the usual 

(ii) if i and j are both in shale, then II‘ = K , h ,  which gives the properly scaled 

(iii) if i and j are in different regions, then II, = 2 K , h / (  1 + K,h) .  

It is a little surprising that we have chosen ll,, to be symmetric. Intuitively, it is 
more probable to jump from a region of low permeability to one of high permeability 
than vice versa. However, the jump probability for going from shale to sandstone 
contains a slow-down factor K , ~ ,  because the ant moves more slowly in shale, and this 
has the effect of symmetrising the probabilities. Note that the algorithm reduces to he 
‘ant in a labyrinth’ algorithm when K,h = 0 and to a simple lattice random walk in the 
limit in which K , ~  = K , ~ .  

The jump probability ll,, has been defined to be given by the harmonic mean of 
the permeabilities of neighbouring sites. This was suggested by the fact that for flow 
in one dimension, or for flow perpendicular to the layers in a layered medium, the 
effective permeability is given by the harmonic mean of the constituent permeabilities. 
We speculate that the proposed algorithm could be directly extended to the multicom- 
ponent permeability case, with the maximum site permeability normalised to one. 
Work is in progress to verify this. 

We have compared the results of the proposed algorithm with those obtained from 
a finite difference algorithm and from the Boston ant algorithm of Bunde et a1 for a 
random, two-component medium with varying shale volume fraction and with values 

discrete time random walk within a sandstone region; 

random walk within a shale region; 
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for the permeability contrast ratio, a = K, , , /K , , ,  ranging from 0 to 1. Averages were 
taken over 10 realisations of the permeability distribution on a 30" lattice, with 1000 
random walkers taking 10000 steps on each realisation. Results are shown in figure 
2. Clearly the results of the proposed algorithm are completely consistent with the 
results of the finite difference algorithm in all cases, whereas those of the Boston ant 
algorithm are not. The different algorithms give results which converge as a +- 1, as is 
to be expected, since they are equivalent when a = 1 (i.e. when there is constant 
permeability throughout the medium). 

As illustrated by Schwartz and Banavar [ 113, random walk algorithms can be used 
to study anisotropic systems as well as isotropic ones. In figure 3 we show the results 
which we obtained in numerical simulations on an anisotropic system with a vertical 
to horizontal anisotropy ratio of I : 10. The permeability contrast ratio is also 1 : 10. 
The vertical effective permeabilities obtained using the random walk algorithm are 
completely consistent with those obtained using a finite difference algorithm. Averages 
were taken over 10 realisations of the permeability distribution on a 303 lattice. The 
permeability distributions were generated by an indicator random function technique 
as described by Joumel and Huijbregts [ 131. In this technique, first- and second-order 
moments of a spatial random function describing the presence or absence of shale are 
used to characterise shale volume fraction and spatial continuity. Figure 4 shows a 
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Figure 2. Effective permeability plotted against shale volume fraction for a random, 
uncorrelated, two-component system with different permeability contrast ratios, a = K.,,/ K,, . 
( a )  a =0.001, ( b )  a =0.01, ( c )  a =0.1 and ( d )  a =0.5. Comparison between the Boston 
ant algorithm (A) ,  the proposed algorithm (O), and the finite difference algorithm (n). 
In all cases, the error bars are of the order of twice the size of the plotting symbols used 
and have been omitted for clarity. 



L450 Letter to the Editor 

1.0 I 

0 0.2 0.4 0.6 0.8 1.0 

Volume fraction 

Figure 3. Effective permeability plotted against shale volume fraction measured perpen- 
dicular to the plane of the shale lenses in a system with a vertical to horizontal anisotropy 
ratio of 1 : 10. The permeability contrast ratio is also 1 : 10. Comparison between random 
walk algorithm (0) and finite difference algorithm (n). 

Figure 4. Cross-section of a realisation of a sandstone-shale permeability distribution on 
a 303 lattice with a shale volume fraction of 0.25 and a vertical to horizontal anisotropy 
ratio of 1 : 10. 
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cross section of one such realisation of a sandstone-shale permeability distribution on 
a lattice of size 303, with a shale volume fraction of 0.25 and with a vertical to horizontal 
anisotropy ratio of 1 : 10. 

In conclusion, a random walk algorithm has been developed to calculate the effective 
permeability of random mixtures of two finite permeability components. I t  is intended 
to use this algorithm to study the dependence of the effective permeability of sandstone- 
shale reservoirs on factors such as the degree of anisotropy, the shape of shale inclusions 
and the correlations between sandstone and shale. 

I would like to thank Drs A A Inayat-Hussain, M J Landman and B P Marett for 
helpful discussions, and BHP CO Ltd for permission to publish this letter. 
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